Apache HAWQ: Full SQL and MPP support on HDFS

Apache HAWQPivotal ported their massively parallel processing (MPP) database Greenplum to Hadoop and made it open source as an incubating project at Apache, called Apache HAWQ. This bring together full ANSI SQL with MPP capabilities and Hadoop integration.

The integration in an existing Hadoop installation is easy, as you can integrate all existing data via external tables. This is done using the pxf API to query external data. This API is customizable, but already brings the most used formats ready made. These include:

To access and store small amounts of data Apache HAWQ has an interface called gpfdist. This enables you to store data outside of your HDFS and still access it within HAWQ to join with the data stored in HDFS. This is especially handy, when you need small tables for dimension or mapping data in Apache HAWQ. This data will then not use a whole block of your HDFS, that is mostly empty.

Apache HAWQ even come integrated with MADlib, also an Apache incubating product, developed by Pivotal. MADlib is a Machine Learning framework, based on SQL. So moving data between different tools for analysing it, is not need anymore. If you have stored your data in Apache HAWQ, you can mine it in the database directly and don’t have to export it, e.g. to a Spark client or tools like Knime or RapidMiner.

MADlib algorithms

MADLib comes with algorithms in the following categories:

  • Classification
  • Regression
  • Clustering
  • Topic Modelling
  • Assocition Rule Mining
  • Descriptive Statistics

By using HAWQ you even can leverage tools like Tableau with real time database connections, which was not satisfactory so far when you used Hive.

Please follow and like us:

Apache Spark 2.0

Apache Spark has release version 2.0, which is a major step forward in usability for Spark users and mostly for people, who refrained from using it, due to the costs of learning a new programming language or tool. This is in the past now, as Spark 2.0 supports improved SQL functionalities with SQL2003 support. It can now run all 99 TPC-DS. The new SQL parser supports ANSI-SQL and HiveQL and sub queries.
Another new features is native csv data source support, based on the already existing Databricks spark csv module. I personally used this module as well as the spark avro module before and they make working with data in those formats really easy.
Also there were some new features added to MLlib:

  • PySpark includes new algorithms like LDA, Gaussian Mixture Model, Generalized Linear Regression
  • SparkR now includes generalized linear models, naive Bayes, k-means clustering, and survival regression.

Spark increased its performance with the release of 2.0. The goal was to make Spark 2.0 10x faster and Databricks shows this performance tuning in a notebook.

All of these improvements make Spark a more complete tool for data processing and analysing. The added SQL2003 support even makes it available for a larger user base and more importantly makes it easier to migrate existing applications from databases to Spark.

Please follow and like us:

Python vs. R for Data Science

In Data Science there are two languages that compete for users. On one side there is R, on the other Python. Both have a huge userbase, but there is some discussion, which is better to use in a Data Science context. Lets explore both a bit:

R
R is a language and programming environment especially developed for statistical computing and grahics. It has been around some time and several thousand packages to tackle statistical problems. With RStudio it also provides an interactive programming environment, that makes analysing data pretty easy.

Python
Python is a full range programming language, that makes it easy to integrate into a company wide system. With the packages Numpy, Pandas and Scikit-learn, Mathplotlib in combination with IPython, it also provides a full range suite for statistical computing and interactive programming environment.

R was developed solely for the purpose of statistical computing, so it has some advantages there, since it is specialized and has been around some years. Python is coming from a programming language and moves now into the data analysis field. In combination with all the other stuff it can do, websites and easy integrations into Hadoop Streaming or Apache Spark.
And for people who want to use the best of both sides can always use the R Python integration Rpy2.

I personally am recently working with Python for my ETL processes, including MapReduce, and anlysing data, which works awesome in combination with IPython as interactive development tool.

Please follow and like us:

Apache Spark: The Next Big (Data) Thing?

Since Apache Spark became a Top Level Project at Apache almost a year ago, it has seen some wide coverage and adoption in the industry. Due to its promise of being faster than Hadoop MapReduce, about 100x in memory and 10x on disk, it seems like a real alternative to doing pure MapReduce.
Written in Scala, it provides the ability to write applications fast in Java, Python and Scala, and the syntax isn’t that hard to learn. There are even tools available for using SQL (Spark SQL), Machine Learning (MLib) interoperating with Pythons Numpy, graphics and streaming. This makes Spark to a real good alternative for big data processing.
Another feature of Apache Spark is, that it runs everywhere. On top of Hadoop, standalone, in the cloud and can easily access diverse data stores, such as HDFS, Amazon S3, Cassandra, HBase.

The easy integration into Amazon Web Services is what makes it attractive to me, since I am using this already. I also like the Python integration, because latelly, that became my favourite language for data manipulation and machine learning.

Besides the official parts of Spark mentioned above, there are also some really nice external packages, that for example integrate Spark with tools such as PIG, Amazon Redshift, some machine learning algorithms, and so on.

Given the promised speed gain, the ease of use and the full range of tools available, and the integration in third party programms, such as Tableau or MicroStrategy, Spark seems to look into a bright future.

The inventors of Apache Spark also founded a company called databricks, which offers professional services around Spark.

Please follow and like us:

SQL on Hadoop: Facebook’s Presto

Earlier this month Facebook open sourced its own product for using SQL on Hadoop. It is called Presto and is something like Facebook’s answer to Cloudera’s Impala or Hortonwork’s Stinger already presented in an earlier post called SQL and Hadoop on this site.
Presto is unlike Hive and more like Impala, since it doesn’t rely on MapReduce for its queries. This makes it about 10 times faster than Hive on large datasets, or so Facebook claims in a blog post.
This product may have a huge impact on the further development of SQL on Hadoop tools, if it’s taken up by enough companies. But since there is no commercial goal linked to it right now, it seems more like Facebook will develop it as their needs increase. So they will not be hurried along.
Like Impala it does support a huge subset of ANSI SQL contrary to Hive’s SQL like HiveQL. So it again aims on making Hadoop more accessible for a broader audience of analyst, that already are familiar with SQL.
Analysis on Big Data sets have been strengthened by this release even more and the entry level investments for more companies to use Hadoop as data storage system are decreasing with every development in this direction.

Please follow and like us: