Analytics Platform: An Evolution from Data Lake

Analytics Platform

Having built a Data Lake for your company’s analytical needs, there soon will arise new use cases, that cannot be easily covered with the Data Lake architecture I covered in previous posts, like Apache HAWQ™: Building an easily accessable Data Lake. You will need to adapt or enhance your architecture to become more flexible. One way to make this flexibility happens, is to transform your Data Lake into an Analytics Platform.

Definition of an Analytics Platform

An Analytics Platform is a platform that provides all kind of services needed for building data products. This often exceeds the functionality of a pure RDBMS or even a Data Lake based on Apache HAWQ™. There are data products that have more requirements than a SQL inferface. Reporting and basic analysis are addressed by this setup, but products dealing with predictions or recommendations often have different needs. An Analytics Platform provides flexibility in the tools used. There can be, for example, a Apache HAWQ™ setup and at the same time an environment for running Tensorflow applications.

Using existing parts: Multi-colored YARN

When you are running a Hadoop Cluster™, you are already familiar with a resource manager. This manager is YARN. With YARN you can already deploy Linux Containers, and support for Docker containers has already progressed pretty far (YARN-3611). Building complex applications and managing them with YARN is called Multi-colored YARN by Hortonworks.
Following through on this idea you will have a cluster with just some central services installed directly on bare metal. You will deploy the rest in containers, as shown in the images below.

Analytics Platform
Analytics Platform based on YARN and Docker

The example makes use of Kubernetes and Docker for virtualization and provides the following services on bare meta, since they are needed by most applications:

  • Ambari
  • Kuberneted
  • YARN
  • ZooKeeper
  • HDFS

Especially the HDFS is important as a central services. This makes it possible for all applications to access the some data. The Picture above shows, that there can be several instances of a Hadoop distribution. This is possible even in different version. So the platform allows for multi tenancy, while all instances are still processing the same data.

Development changes

Having an Analytics Platform makes the development of data products easier. There always was the problem of developing a product on a sample of the data, when you used development and staging systems, as decribed by me here. In same cases these did not contain all possibly combinations of data. This could result in error after a deployemnt on the production environment. Even going through all development and staging could not change this. This new approach allows you to deploy all three systems on the same data. So there you can account for all data induced errors on the development and staging systems already.
You can even become more agile in your development process. The picture below shows an example deployment process, that uses this system.

Analytics Platform: Deployment Process


Moving from a pure Data Lake to an Analytics Platform give you are flexibility and helps in the development of data products. Especially since you can develop on the same data as is available on production. Of course it brings more complexity to an already complex environment. But since it is possible to keep YARN as resource manager and move to a more agile way of development and deployment, it might be worth considering. Once Multi-Colored YARN is finished, it will be easier to make this happen.

Apache AVRO: Data format for evolution of data

Apache AVROFlexible Data Format: Apache AVRO

Apache AVRO is a data serialization format. It comes with an data definition format that is easy to understand. With the possibility to add optional fields there is a solution for evolution of the schemas for the data.

Defining a Schema

Defining a schema in Apache AVRO is quite easy, since it is a JSON object in the form of:

"type": "typename",
"name": "name of field",
"doc": "documentation of field"

A schema does consists of:

  • a namespace
  • name
  • type = record
  • documentation
  • fields

A typical schema would look like this:

	"namespace": "info.datascientists.avro",
	"type": "record",
	"name": "RandomData",
	"doc": "data sets contain random data.",
	"fields": [
			"name": "long_field",
			"type": "long",
			"doc": "a field containg a number"
			"name": "string_field",
			"type": "string",
			"doc": "a field containing a string"

Changing a schema downwards compatible

If you now want to add a new field and stay compatible to your existing schema, you can just do the following:

	"namespace": "info.datascientists.avro",
	"type": "record",
	"name": "RandomData",
	"doc": "data sets contain random data.",
	"fields": [
			"name": "long_field",
			"type": "long",
			"doc": "a field containg a number"
			"name": "string_field",
			"type": "string",
			"doc": "a field containing a string"
                       "name": "optional_new_field",
                       "type": ["null", "string"],
                       "default": "New Field",
                       "doc": "This is a new options field"

This change is still compatible to the version above. It is marked as options by [“null”, “string”] in the type field. The attribute default will fill this field with the value documented here, if the field is not existing in the data.

Serializing data using the schema

Once the schema is defined, it can be used to serialize the data. This serialization also serves as a compression format of about 30% in comparison to normal text. Serializazion is possible in a wide range of programming languages, but it is best implemented in Java. A tutorial on how to serialize data using a schema can be found here.

Reading the data with Apache Hive

Data stored in Apache AVRO is easily accessible if read by Hive external tables. The data is autmatically deserialized and made human readable. Apache Hive even supports default values on schema changes. If new fields are added with a default value, the Hive table can read all versions of the schema in the same table.

Apache HAWQ: Building an easily accessable Data Lake

Apache HAWQ for Data Lake ArchitectureData Lake vs Datawarehouse

The Data Lake Architecture is an up and coming approach to making all data accessible through several methods, be that in real-time or batch analysis. This includes unstructured data as well as structured data. In this approach the data is stored on HDFS and made accessible by several tools, including:

All of these tools have advantages and disadvantages when used to process data, but all of them combined make your data accessible. This is the first step in building a Data Lake. You have to have your data, even schemaless data accessible to your customers.
A classical Datawarehouse on the opposite only contains structured data, that is at least preproccessed and has a fixed schema. Data in a classical Datawarehouse is not the raw data entered into the system. You need a seperate staging area for tranformations. Usually this is not accessible for all consumers of your data, but only for the Datawarehouse developers.

Data Lake Architecture using Apache HAWQ

It is a challenge to build a Data Lake with Apache HAWQ, but this can be overcome on the design part. One solution to build such a system can be seen in then picture below.

Data Entry

To make utilization of Apache HAWQ possible the starting point is a controlled Data Entry. This is a compromise between schemaless and schematized data. Apache AVRO is a way to do this. Schema evolution is an integral part of AVRO and it provides structures to save unstrcutured data, like maps and arrays. A separate article about AVRO will be one of this next topics here, to explain schema evolution and how to make the most of it.
Data structured in schema can then be pushed message wise into a messaging queue. Chose a queue that fits your needs best. If you need secure transactions RabbitMQ may be the right choice. Another option is Apache Kafka.

Pre-aggregating Data

Processing and storing single message on HDFS is not an option, so there is need of another system to aggregate messages before storing them on HDFS. For this a software project called Apache Nifi is a good choice. This system comes with processors that make things like this pretty easy. It has a processor called MergeContent that merges single AVRO messages and removes all headers but one, before writing them to HDFS.
If those messages are still not above the HDFS blocksize, there is the possibility to read messages from HDFS and merge them into larger files still.

Making data available in the Data Lake

Use Apache Hive to make data accessible from AVRO format. HAWQ could read the AVRO files directly, but Hive handles schema evolution in a more effective way. For example, if there is the need to add a new optional field to an existing schema, add a default value for that field and Hive will fill entries from earlier messages with this value. So if HAWQ now accesses this Hive table it automatically reads the default value for field added later with default values. It could not do this by itself. Hive also has a more robust way of handling and extracting keys and values from map fields right now.

Data Lake with SQL Access

All data is available in Apache HAWQ now. This enables tranformations using SQL and making all of your data accessible by a broad audience in your company. SQL skills are more common than say Spark programming in Java, Scala or PySpark. From here it is possible to give analysts access to all of the data or building data marts for single subjects of concern using SQL transformations. Connectivity to reporting tools like Tableau is possible with a driver for Postgresql. Even advanced analytics are possible, if you install Apache MADlib on your HAWQ cluster.

Using Data outside of HAWQ

It is even possible to use all data outside of HAWQ, if there is a need for it. Since all data is available in AVRO format, accessing it by means of Apache Spark with Apache Zeppelin is also possible. Hive queries are possible too, since all data is registered there using external tables, which we used for integration into HAWQ.
Accessing results of such processing in HAWQ is possible too. Save the results in AVRO format for integration in the way described above or use “hawq register” to access parquet files directly from HDFS.


Using Apache HAWQ as base of a Data Lake is possible. Just take some contraints into consideration. But entering data with semi-structured with AVRO format also saves work later when you process the data. The main advantage is, that you can utilize SQL as an interface to all of you data. This enables many people in your company to access your data and will help you on your way to Data Driven decisions.

Apache HAWQ: Full SQL and MPP support on HDFS

Apache HAWQPivotal ported their massively parallel processing (MPP) database Greenplum to Hadoop and made it open source as an incubating project at Apache, called Apache HAWQ. This bring together full ANSI SQL with MPP capabilities and Hadoop integration.

The integration in an existing Hadoop installation is easy, as you can integrate all existing data via external tables. This is done using the pxf API to query external data. This API is customizable, but already brings the most used formats ready made. These include:

To access and store small amounts of data Apache HAWQ has an interface called gpfdist. This enables you to store data outside of your HDFS and still access it within HAWQ to join with the data stored in HDFS. This is especially handy, when you need small tables for dimension or mapping data in Apache HAWQ. This data will then not use a whole block of your HDFS, that is mostly empty.

Apache HAWQ even come integrated with MADlib, also an Apache incubating product, developed by Pivotal. MADlib is a Machine Learning framework, based on SQL. So moving data between different tools for analysing it, is not need anymore. If you have stored your data in Apache HAWQ, you can mine it in the database directly and don’t have to export it, e.g. to a Spark client or tools like Knime or RapidMiner.

MADlib algorithms

MADLib comes with algorithms in the following categories:

  • Classification
  • Regression
  • Clustering
  • Topic Modelling
  • Assocition Rule Mining
  • Descriptive Statistics

By using HAWQ you even can leverage tools like Tableau with real time database connections, which was not satisfactory so far when you used Hive.

Apache Zeppelin: Use with remote Spark cluster and Yarn

Apache Zeppelin is pretty usefull for interactive programming using the web browser. It even comes with its own installation of Apache Spark. For further information you can check my earlier post.
But the real power in using Spark with Zeppelin lies in its easy way to connect it to your existing Spark cluster using YARN. The following steps are necessary:

  • Copy your Hadoop configuration files to your Zeppelin installation under $ZEPPELIN_HOME/conf
  • Restart your Zeppelin Notebook
  • Insert the value “yarn-client” into the field master in the spark interpreter, as shown in the picture below.


After these steps you can use your notebooks with spark running on a yarn cluster. So you can make use of all the resources in the queue you assigned spark on you cluster.

Apache Spark 2.0

Apache Spark has release version 2.0, which is a major step forward in usability for Spark users and mostly for people, who refrained from using it, due to the costs of learning a new programming language or tool. This is in the past now, as Spark 2.0 supports improved SQL functionalities with SQL2003 support. It can now run all 99 TPC-DS. The new SQL parser supports ANSI-SQL and HiveQL and sub queries.
Another new features is native csv data source support, based on the already existing Databricks spark csv module. I personally used this module as well as the spark avro module before and they make working with data in those formats really easy.
Also there were some new features added to MLlib:

  • PySpark includes new algorithms like LDA, Gaussian Mixture Model, Generalized Linear Regression
  • SparkR now includes generalized linear models, naive Bayes, k-means clustering, and survival regression.

Spark increased its performance with the release of 2.0. The goal was to make Spark 2.0 10x faster and Databricks shows this performance tuning in a notebook.

All of these improvements make Spark a more complete tool for data processing and analysing. The added SQL2003 support even makes it available for a larger user base and more importantly makes it easier to migrate existing applications from databases to Spark.

Python vs. R for Data Science

In Data Science there are two languages that compete for users. On one side there is R, on the other Python. Both have a huge userbase, but there is some discussion, which is better to use in a Data Science context. Lets explore both a bit:

R is a language and programming environment especially developed for statistical computing and grahics. It has been around some time and several thousand packages to tackle statistical problems. With RStudio it also provides an interactive programming environment, that makes analysing data pretty easy.

Python is a full range programming language, that makes it easy to integrate into a company wide system. With the packages Numpy, Pandas and Scikit-learn, Mathplotlib in combination with IPython, it also provides a full range suite for statistical computing and interactive programming environment.

R was developed solely for the purpose of statistical computing, so it has some advantages there, since it is specialized and has been around some years. Python is coming from a programming language and moves now into the data analysis field. In combination with all the other stuff it can do, websites and easy integrations into Hadoop Streaming or Apache Spark.
And for people who want to use the best of both sides can always use the R Python integration Rpy2.

I personally am recently working with Python for my ETL processes, including MapReduce, and anlysing data, which works awesome in combination with IPython as interactive development tool.

Apache Spark: The Next Big (Data) Thing?

Since Apache Spark became a Top Level Project at Apache almost a year ago, it has seen some wide coverage and adoption in the industry. Due to its promise of being faster than Hadoop MapReduce, about 100x in memory and 10x on disk, it seems like a real alternative to doing pure MapReduce.
Written in Scala, it provides the ability to write applications fast in Java, Python and Scala, and the syntax isn’t that hard to learn. There are even tools available for using SQL (Spark SQL), Machine Learning (MLib) interoperating with Pythons Numpy, graphics and streaming. This makes Spark to a real good alternative for big data processing.
Another feature of Apache Spark is, that it runs everywhere. On top of Hadoop, standalone, in the cloud and can easily access diverse data stores, such as HDFS, Amazon S3, Cassandra, HBase.

The easy integration into Amazon Web Services is what makes it attractive to me, since I am using this already. I also like the Python integration, because latelly, that became my favourite language for data manipulation and machine learning.

Besides the official parts of Spark mentioned above, there are also some really nice external packages, that for example integrate Spark with tools such as PIG, Amazon Redshift, some machine learning algorithms, and so on.

Given the promised speed gain, the ease of use and the full range of tools available, and the integration in third party programms, such as Tableau or MicroStrategy, Spark seems to look into a bright future.

The inventors of Apache Spark also founded a company called databricks, which offers professional services around Spark.

Big Data and Data Warehouse Architecture

Further development and new additions to the Hadoop framework, such as Stinger from HortonWorks or Impala from Cloudera try to bridge the gap between traditional EDWH architectures and big data architectures.
Especially initiative with the goal of speeding up Hive and delivering SQL 2011 standard to use on Map / Reduce Hadoop clusters makes this technology usable for developers with a SQL background. This next iteration in Hive optimization also brings an ACID framework with transactions and writeable tables. This is especially useful in data warehouse contexts, for example when you need to add meta data.

With these developments it seems plausible, that Hadoop and with it Big Data as a whole will move from ETL plattform for traditional EDWH architectures using traditional database systems, to a unified plattform, where Hadoop stores all data from raw unstructured data to structured data from the companies transactional systems and the meta data created in for reporting purposes. So access to all data would be given in the same system and query-able with SQL.
Standard reporting and deeper analysis on all data could then be accessed on the same system, so that all analysts and traditional BI developers share one platform and a better understanding of all the data needed and used in the data warehouse system.

I already did a benchmark on query speed for MySQL, Stinger and Impala here and will update this, once is out.

Comparing Stinger to Impala

With Hadoop 2.0 and the new additions of Stinger and Impala I did a (not representive) test of the performance on a Virtual Box running on my desktop computer. It was using the following setup:

  • 4 GB RAM
  • Intel Core i5 2500 3.3 GHz

The datasets were the following:

  1. Dataset 1: 71.386.291 rows and 5 columns
  2. Dataset 2: 132.430.086 rows and 4 columns
  3. Dataset 3: partitioned data of 2.153.924 rows and 32 columns
  4. Dataset 4: unpartitioned data of 2.153.924 rows and 32 columns

The results were the following:

QueryHive (0.10.0)ImpalaStinger (Hive 0.12.0)
Join tables167.61 sec31.46 sec122.58 sec
Partitioned tables Dataset 342.45 sec0.29 sec20.97 sec
Unpartitioned tables Dataset 447.92 sec1.20 sec36.46 sec
Grouped Select Dataset 1533.83 sec81.11 sec444.634 sec
Grouped Select Dataset 2323.56 sec49.72 sec313.98 sec
Count Dataset 1252.56 sec66.48 sec243.91 sec
Count Dataset 2158.93 sec41.64 sec174.46 sec
Compare Impala vs. Stinger
Compare Impala vs. Stinger

This shows that Stinger provides a faster SQL interface on Hive, but since it is still using Map / Reduce when calculating data it is no match for Impala that doesn’t use Map / Reduce. So using Impala makes sense when you want to analyse data in Hadoop using SQL even on a small installation. This should give you easy and fast access to all data stored in your Hadoop cluster, that was before not possible.
Facebook’s Presto should achieve nearly the same results, since the underlying technique is similar. These latest additions and changes to the Hadoop framework really seem like a big boost in making this project more accessible for many people.